Improving Operating Performance Measurement:

Linking to Discounted Cash Flow Value & Isolating

Management's Contribution to Value

May 7, 2016

Stephen F. O'Byrne Shareholder Value Advisors Inc.

Introduction

- Operating performance measurement has two key objectives:
 - Increasing shareholder value, which means that operating performance measures need to tie to discounted cash flow value.
 - Isolating and rewarding management contribution to value, which means that operating performance measures need to be decomposed into the component due to management and the component due to industry factors.
- In this presentation, we will show that:
 - The "EVA math" is the key to understanding how operating performance links to discounted cash flow value: it shows how operating performance is tied to discounted flow value, expected return and excess return.
 - The EVA math does not say that EVA is the only performance measure that matters.
 - The EVA math highlights the importance of future growth value ("FGV") and shows why non-EVA measures can be important: they are better proxies for Δ FGV than Δ EVA. This allows other measures to be used in a way that is consistent with discounted cash flow value.
 - Combining EVA with empirical models of △FGV significantly improves operating performance measurement, i.e., makes the operating performance measure a better proxy for excess return. This can be done in two ways: excess △EVA with "dynamic expected improvement" and "operating return".
 - Better operating performance measures don't eliminate the need to isolate management's contribution to value because industry affects operating performance, not just market performance.
- The two operating performance measures can be used to monitor strategy implementation and to communicate with analysts and governance advisors.

Table of Contents

Торіс	Description	Pages
The EVA math: DCF value, expected return, excess return	How ∆EVA and changes in future growth value ("∆FGV") are linked to discounted cash flow value, expected return and excess return.	4-10
Operating drivers of AECV	Some useful insights on FGV drivers from the IRRCi Alignment Gap report, McKinsey & the Balanced Scorecard	11-27
Operating drivers of ∆FGV	Statistical models of ∆FGV using ∆EVA, capital growth, sales growth, EBITDA growth, advertising and R&D	11-27
Two period measures that use ∆FGV drivers in a way that's consistent with DCF valuation	Excess ∆EVA with "dynamic EI" and "operating return"	28-34
Excess ∆EVA with dynamic EI & operating return vs 3 equally weighted measures & ∆EBITDA	These two measures explain excess returns much better than ∆EVA alone, three equally weighted measures or EBITDA	35-40
Operating return using a simpler model of operating value	Operating return calculated from free cash flow and a statistical model of operating value using just capital, NOPAT, EVA and sales growth	41-47
Isolating management's contribution to operating performance	Industry factors affect operating performance, not just market performance	48-52

THE EVA MATH

Economic Value Added (EVA) - or economic profit (EP) - is profit after the cost of debt *AND* equity capital

Sales Cost of goods sold Gross profit SG&A Pre-tax operating profit Taxes Net operating profit after-tax (NOPAT)		100 (80) 20 (6) 14 (5) 9
Total assets Current liabilities (non-interest bearing) Capital x Cost of capital Capital charge	60 (20) 40 10%	(4)
EVA		5

EVA is an important financial concept because it's the only earnings measure that ties to discounted cash flow value

Value	Operating Expression
Market value of debt	 Present value of future interest and principal payments discounted at the cost of debt
Market value of equity	 Present value of future dividends discounted at the cost of equity
Market value of debt + equity	 Present value of future free cash flow discounted at the weighted average cost of capital (WACC)
Market value of debt + equity	 Capital plus the present value of future EVA discounted at the cost of capital EVA = NOPAT – WACC x beginning capital NOPAT = <u>Net Operating Profit After Tax</u>
Market value of debt + equity	 Current operations value + future growth value Current operations value = [Capital + EVA/WACC] Future growth value (FGV) = PV of future ΔEVA FGV = (1 + WACC)/WACC x PV of future annual ΔEVA

Future growth value – *an extremely important concept* - is the value attributable to *future* improvements in EVA

	_	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
ROIC Cost of capital Capital growth	15% 10% 3%						
Beginning capital NOPAT Capital charge EVA ∆EVA Growth rate in ∆EVA	_	100,000 15,000 <u>(10,000)</u> 5,000	103,000 15,450 (10,300) 5,150 150	106,090 15,914 (10,609) 5,305 155 3%	109,273 16,391 (10,927) 5,464 159 3%	112,551 16,883 (11,255) 5,628 164 3%	115,927
Present value of future Δ EVA = year 2 Δ EVA/(WACC - growth rate)		2,143	-				
Capitalized present value of future \triangle EVA = (1 + WACC)/WACC x PV	A	23,571	= Future growth	i value			
Present value of current (i.e., year 1) EVA = Year 1 EVA/WACC Ending capital Market value (= A + B + C)	В С	103,000	= Perpetuity va = Ending capita = A + B + C		EVA	= Current opera	tions value
FREE CASH FLOW VALUATION							
NOPAT			15,450	15,914	16,391	16,883	
Change in ending capital			3,090	3,183	3,278	3,377	
Free cash flow			12,360	12,731	13,113	13,506	
Growth in free cash flow				3%	3%	3%	
Present value of future free cash flow = year 2 FCF/(WACC - growth rate)		176,571					

EVA also ties to expected and excess investor returns

Value	Operating Expression
	 WACC x market enterprise value
	WACC x current operations value + WACC x FGV
	NOPAT [with WACC return on new capital]
Europete di increate a nationa	■ (1+WACC)/WACC x EI + expected △FGV
Expected investor return	■ EI = expected △EVA =
	 (WACC x FGV – expected ∆FGV)/((1 + WACC)/WACC)
	If expected ∆FGV = 0, EI = WACC x FGV/((1+WACC)/WACC)
	 Actual investor return – expected investor return
	 Actual investor return = (ending market enterprise value – beginning market enterprise value) + future value of free cash flow.
Excess investor return	 Expected investor return = beginning market enterprise value x [((1 + WACC)[^]years) – 1]
	■ Capitalized value of excess △EVA + unexpected △FGV
	■ Excess △EVA = △EVA – expected improvement ("EI")
	■ EI = △EVA required to provide a WACC return on FGV

Return on market value = WACC if and only if capitalized \triangle EVA + \triangle FGV = WACC x beginning FGV

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
ROIC	15%					
Cost of capital Capital growth	10% 3%					
Beginning capital	100,000	103,000	106,090	109,273	112,551	115,927
NOPAT	15,000	15,450	15,914	16,391	16,883	
Capital charge	(10,000)	(10,300)	(10,609)	(10,927)	(11,255)	
EVA	5,000	5,150	5,305	5,464	5,628	
ΔΕVΑ		150	155	159	164	
Growth rate in ΔEVA			3%	3%	3%	

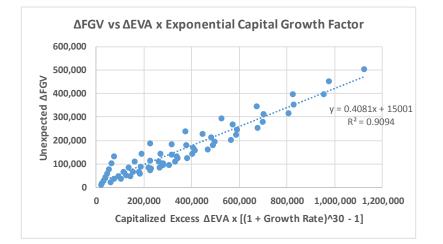
CALCULATION OF TOTAL RETURN FROM AMARKET VALUE AND FCF SHOWING ACTUAL RETURN = EXPECTED RETURN

Present value of future ∆EVA	2,143	2,207	
= next year's ∆EVA/(WACC - growth rate)			
Capitalized present value of future ∆EVA (= FGV)	23,571	24,279	
= (1 + WACC)/WACC x PV of future ∆EVA			
Present value of current EVA (= EVA/WACC)	50,000	51,500	
Ending capital	103,000	106,090	
Market value	176,571	181,869	
Increase in market value		5,297	A
NOPAT		15,450	
Change in ending capital		3,090	
Free cash flow	_	12,360	В
Actual return = ∆market value + free cash flow (= A + B)		17,657	= A + B
Expected return (= WACC x market value)	17,657		

CALCULATION SHOWING \triangle EVA AND \triangle FGV PROVIDE EXPECTED RETURN ON FGV

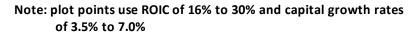
Expected return on FGV (= WACC x FGV)	2,357
Capitalized value of ∆EVA	1,650 C = [(1 + WACC)/WACC] x ∆EVA
Change in FGV	707 D
Actual return on FGV (= C + D)	2,357 = C + D

Excess return is the sum of capitalized excess \triangle EVA plus the unexpected change in future growth value


		Year 1	Year 2		Year 3	Year 4	Year 5	Year 6
			-		0			
ROIC	15%		18%					
Cost of capital	10%							
Capital growth	3%		4%					
Beginning capital		100,000	103,000	1	07,120	111,405	115,861	120,495
NOPAT		15,000	18,540		19,282	20,053	20,855	
Capital charge		(10,000)	(10,300)	(10,712)	(11,140)	(11,586)	
EVA		5,000	8,240		8,570	8,912	9,269	
ΔΕVΑ			3,240		330	343	356	
Growth rate in ∆EVA						4%	4%	
CALCULATION OF DOLLAR EXCESS RETURN FRO								
Present value of future AEVA		2,143	5,493					
= next year's ∆EVA/(WACC - growth rate)		_,	-,					
Capitalized present value of future Δ EVA (= FGV)		23,571	60,427					
= (1 + WACC)/WACC x PV of future ∆EVA		- , -	,					
Present value of current EVA (= EVA/WACC)		50,000	82,400					
Ending capital		103,000	107,120					
Market value (= A + B + C)		176,571	249,947	-				
Increase in market value			73,375	А				
NOPAT			18,540					
Change in ending capital			4,120					
Free cash flow		_	14,420	В				
Actual return = ∆market value + free cash flow = A + B			87.795	= A + B				
Expected return (= WACC x market value)		17.657	,	_				
Excess return (= actual return - expected return)		,	70,138	С				

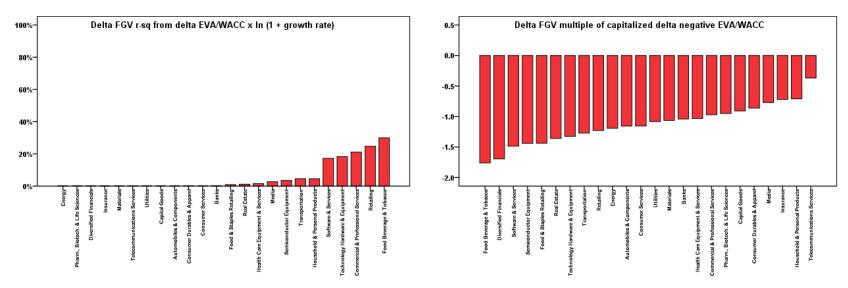
CALCULATION SHOWING DOLLAR EXCESS RETURN = CAPITALIZED EXCESS ΔEVA + UNEXPECTED ΔFGV

Actual ∆EVA	3,240
Expected ∆EVA (= EI)	(150)
Excess ∆EVA (actual ∆EVA = EI)	3,090
Capitalized excess ∆EVA (= excess ∆EVA x (1 + WACC)/WACC)	33,990 D
Actual ΔFGV	36,855
Expected ∆FGV	(707)
Unexpected ∆FGV	36,148 E
Excess return (= capitalized excess Δ EVA + unexpected Δ FGV)	70,138 = D + E = C


OPERATING DRIVERS OF \triangle FGV

In our example, \triangle FGV is well explained by two *current* period measures: \triangle EVA and \triangle capital

Note: plot points use ROIC of 16% to 30% and capital growth rates of 3.5% to 7.0%



The plot points in the two graphs above are derived from the example on the second previous page. The example starts with a basic case valuation - assuming 15% ROIC, 3% capital growth and 10% cost of capital – and then calculates the change in FGV associated with an increase in ROIC and capital growth. The graph plots capitalized excess Δ EVA and unexpected Δ FGV for 64 scenarios with new ROIC ranging from 16% to 30% and new capital growth rate ranging from 3.5% to 7.0%.

The left panel shows that capitalized excess \triangle EVA x [(1 + capital growth rate)^30 – 1] explains 91% of the variation in excess \triangle FGV. We can get the r-squared closer and closer to 100% by extending the projection horizon for the capital growth rate beyond 30 years.

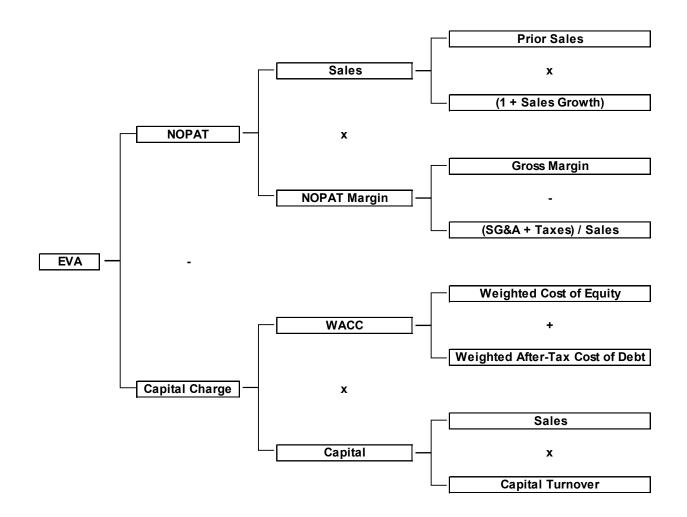
When we use historical capital growth rates as a proxies for expected capital growth rates, we find that logarithmic transformations have more explanatory power than exponential transformations because log functions dampen the noise in the historical growth rate while exponential functions compound it. The right panel uses a logarithmic growth rate to provide a comparison to the better fitting models using historical growth rates (shown on the following page). The right panel shows that capitalized excess Δ EVA x ln(1 + capital growth rate) explains 71% of the variation in excess Δ FGV.

In practice, \triangle EVA x In(1 + growth) has limited explanatory power and \triangle FGV is negative when EVA increases from a negative base

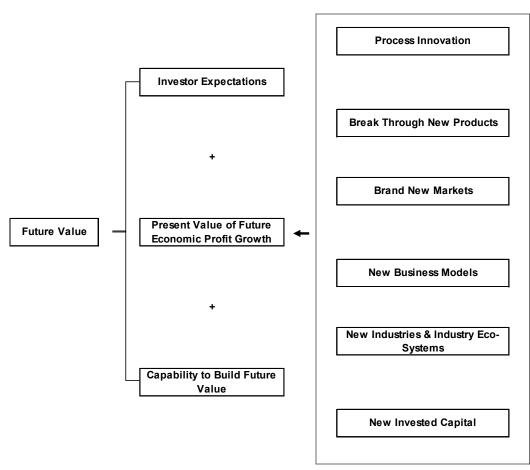
Delta FGV From Delta Negative EVA

Delta FGV From Delta EVA and Growth

The left panel shows the variance in five year \triangle FGV explained by \triangle EVA+/WACC x ln(1 + growth rate) across the 24 GICS industry groups. The variance explained is zero in half the industry groups and only 30% in the best industry group, Food Beverage & Tobacco. The sample is five year periods ending in 1996-2015 for S&P 1500 companies. EVA+ is EVA if positive and zero otherwise.


The right panel shows that improvements in EVA- [= EVA if negative, zero otherwise] *reduce* FGV in every industry group. This, of course, makes \triangle EVA- a poor proxy for \triangle FGV.

For the median GICS industry group, Δ EVA only explains 19% of the variation in five year excess returns vs. 31% for Δ EBITDA.


What are the current period drivers of $\triangle FGV$?

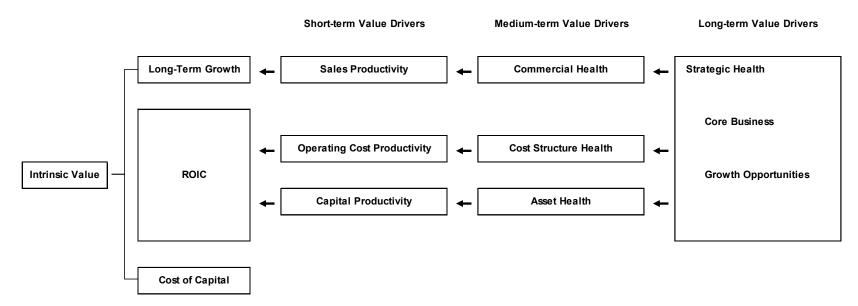
- EVA value driver trees are common, but they typically show the current period drivers of *current* period EVA, not current period △FGV.
- Several sources, including the IRRCi report on the Alignment Gap, Kaplan & Norton's Balanced Scorecard and the McKinsey valuation book, have helpful discussions of future value drivers.
- The big challenge in using future value drivers is measurement and valuation impact. The McKinsey Valuation authors note:
 - "If managers know the relative impact of their company's value drivers on long-term value creation, they can make explicit trade-offs between pursuing a critical driver and allowing performance against a less critical driver to deteriorate. This is particularly helpful for choosing between activities that deliver short-term performance and those that build the long-term health of the business." Koller, Goedhart & Wessels, Valuation, 5th edition, p. 420.
- Our approach is to develop a statistical model of △FGV using, for the analysis in this report, five variables available in/from Compustat: EVA, R&D, advertising, sales and EBITDA.
- For a specific industry, the model of △FGV can be improved by incorporating additional measures, e.g., in the airline industry, customer satisfaction measured by Net Promoter Score.

Conventional value driver trees highlight the current period drivers of *current* **EVA**

The IRRCi report on "The Alignment Gap" presents a future value driver tree

Strategic Initiatives

Source: Mark Van Clieaf, Karel Leefland & Stephen O'Byrne, "The Alignment Gap Between Value Creation, Performance Measurement and Long-Term Incentive Design", IRRCi Report, November 2014, p. 25, available at www.irrci.org


Kaplan & Norton identify many drivers of future value in their books on the Balanced Scorecard

	Strategic Themes	Strategic Objectives	Strategic Measures
Financial	Financial Growth	Return on Capital Employed	ROCE
		Existing Asset Utilization	Cash Flow
		Profitability	Net Margin Rank (vs. Competition)
		Industry Cost Leader	Full Cost per Gallon Delivered (vs. Competition)
		Profitable Growth	Volume Growth Rate vs. Industry
			Premium Ratio
			Nongasoline Revenue and Margin
Customer	Delight the Customer	Continually Delight the Targeted Customer	Share of Segment in Selected Key Markets
			Mystery Shopper Rating
	Win-Win Dealer Relations	Build Win-Win Relations with Dealer	Dealer Gross Profit Growth
			Dealer Survey
Internal	Build the Franchise	Innovative Products and Services	New Product ROI
			New Product Acceptance Rate
		Best-in-Class Franchise Teams	Dealer Quality Score
	Safe and Reliable	Refinery Performance	Yield Gap
			Unplanned Downtime
	Competitive Supplier	Inventory Management	Inventory Levels
			Run-out Rate
		Industry Cost Leader	Activity Cost vs. Competition
	Quality	On Spec, on Time	Perfect Orders
	Good Neighbor	Improve EHS	Number of Environmental Incidents
			Days Away from Work Rate
Learning and Growth	Motivated and Prepared Workfor	Climate for Action	Employee Survey
-		Core Competencies and Skills Access to Strategic Information	Personal Balanced Scorecard (%) Strategic Competency Availability Strategic Information Availability

Balanced Scorecard for Mobil North American Marketing and Refining

Source: Robert S. Kaplan and David P. Norton, The Strategy Focused Organization: How Balanced Scorecard Companies Thrive in the New Business Environment, p. 41.

McKinsey presents a "Value Creation Tree" that includes longterm value drivers

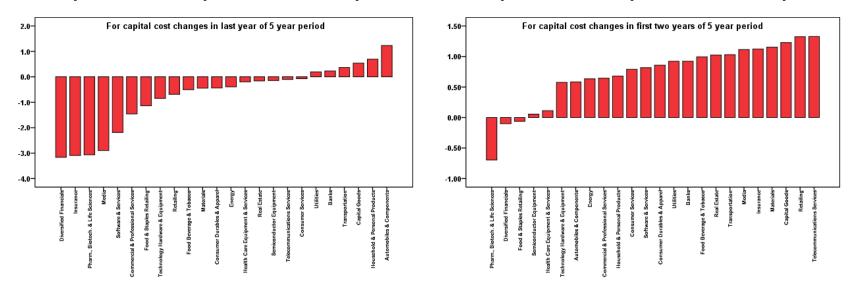
Source: Tim Koller, Marc Goedhart & David Wessels, Valuation: Measuring and Managing the Value of Companies, 5th Edition, p. 417

The McKinsey discussion of performance management lists many more specific drivers of future value

Advertising spending Brand strength Customer satisfaction Employee retention Market share Product pipeline Product price premium R&D spending Sales force productivity Same store sales growth

Source: Tim Koller, Marc Goedhart, David Wessels, Valuation: Measuring and Managing the Value of Companies, 5th edition, chapter 20

We develop industry models of FGV using variables than can be calculated from Compustat data

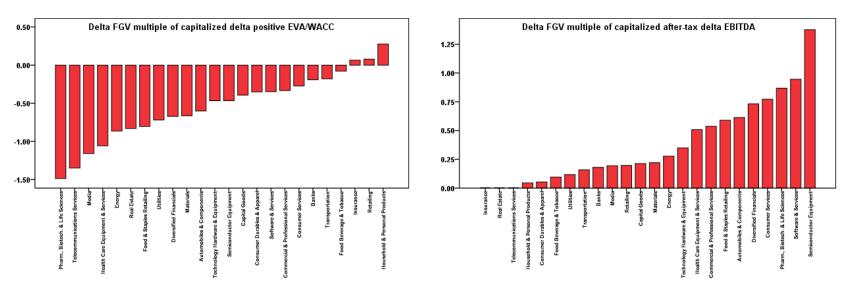

- Our models are multiple regression models using FGV/capital and △FGV/capital as the dependent variables.
- The independent variables include five drivers of FGV: EVA, EBITDA, sales, R&D and advertising:
 - $\triangle EVA + x \ln (1 + \text{sales growth})$
 - ∆EVA+
 - ∆EVA-
 - △EBITDA x (1 tax rate) / WACC
 - △sales x average EVA+ return on capital
 - ∆sales
 - $\Delta R\&D \times (1 \tan rate) / WACC$
 - \triangle advertising x (1 tax rate) / WACC
 - Beginning future growth value
 - Beginning capital

Why should EBITDA be a driver of future $\triangle EVA$?

- When positive NPV investments have "delayed productivity of capital", EVA falls while market value, and FGV, is increasing.
- Delayed productivity of capital has economic and accounting causes:
 - Economic causes are increasing capacity utilization and other economies of scale and experience that develop over time.
 - An accounting cause is straight line depreciation which makes the total capital cost of an asset, i.e., after-tax depreciation plus capital charge, decline over the life of the asset.
- Empirical models show that investors expect capital to have delayed productivity:
 - Investor perceptions of delayed productivity are evident when we develop a model of five year excess returns using five independent variables: the five year change in COPAT [Cash Operating Profit After Tax], the changes in total capital cost (i.e., after-tax depreciation + capital charge) in the first two years, in the second two years and in the final year, and expected improvement.
 - The multiples on the recent changes in capital cost are frequently *positive*, and even when negative, are much lower, in absolute value, than the multiple on ∆COPAT. The following page shows the ratio of capital cost multiple to COPAT multiple for early and late investments by industry group.
- When △EBITDA is positive, but △EVA is zero (because tax-adjusted △EBITDA is offset by △capital cost), EVA is likely to increase in the future for economic and/or accounting reasons. This is why △EBITDA is a driver of △FGV.

Lower multiples on recent \triangle capital cost show that investors expect capital to have increasing productivity

Capital Cost Multiple / COPAT Multiple

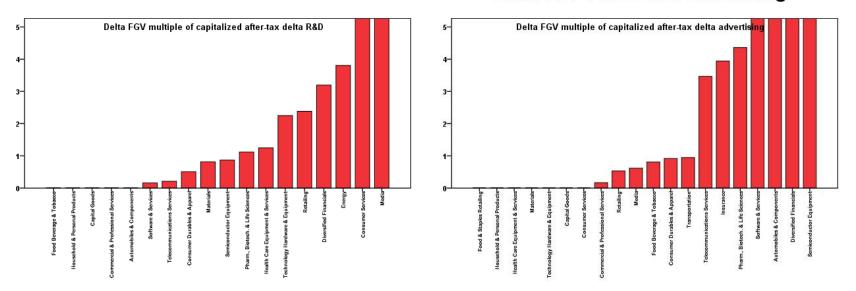

Capital Cost Multiple / COPAT Multiple

The left panel shows, for each of the 24 GICS industry groups, the ratio of capital cost multiple to COPAT multiple for capital cost changes in the last year of each five year period. The multiples are coefficients in a multiple regression where excess return is the dependent variable and the independent variables, i.e., capital cost changes and expected improvement, are expressed as capitalized future values, i.e., carried forward to the ending year to take account of the time value of money and capitalized to better approximate the impact of earnings on market value. To show more costly capital as higher positive multiples, the ratio is calculated as [-capital cost multiple/COPAT multiple] since capital cost multiples should be negative.

The right panel shows, for each of the 24 CIGS industry groups, the ratio of capital cost multiple to COPAT multiple for capital cost changes in the first two years of each five year period. If investors believe that the increased capital was fully productive, the ratio should be close to 1. The low multiples on capital cost changes in the most recent year show that investors anticipate additional COPAT from more recent investments, i.e., anticipate delayed productivity of capital.

Insights from the \triangle FGV models: in most industries, \triangle EVA+ without growth destroys FGV, while EBITDA growth increases FGV

Delta FGV From Delta Positive EVA



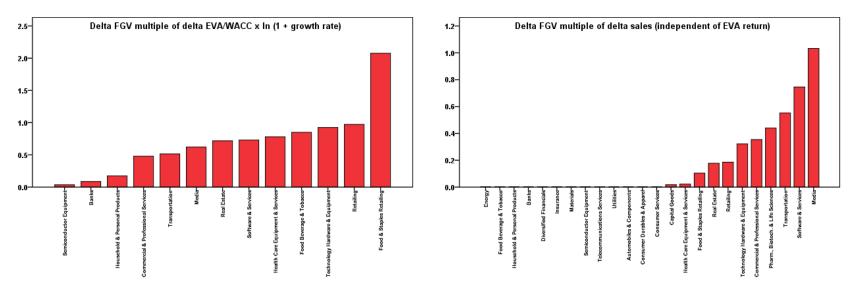
Delta FGV From Delta EBITDA

The left panel shows the change in FGV per \$1 of capitalized \triangle EVA+ for each of the 24 GICS industry groups. The change in FGV is the coefficient of \triangle EVA+/WACC in a regression that controls for \triangle EVA+/WACC x In(1 + sales growth), so it represents the impact of \triangle EVA+ when there is no business growth. In all but three groups, \triangle EVA+ without business growth has a negative effect on FGV.

The right panel shows the change in FGV per \$1 of capitalized after-tax \triangle EBITDA. If after-tax \triangle EBITDA is offset by increases in after-tax depreciation and capital charge, why should FGV increase? Our research shows that the value multiple (from investor return) on after-tax \triangle EBITDA is significantly higher, in absolute value, than the value multiples on after-tax \triangle depreciation and \triangle capital charge. One explanation for this result is that investors believe that capital has "delayed productivity" due to economics (e.g., companies become more profitable over time as they increase capacity utilization) or accounting (e.g., the total capital recovery charge for an investment declines over time because companies use straight line, not sinking fund, depreciation).

Insights from the Δ *FGV models:* Increases in R&D and advertising increase FGV in many industries, but don't add value in all of them

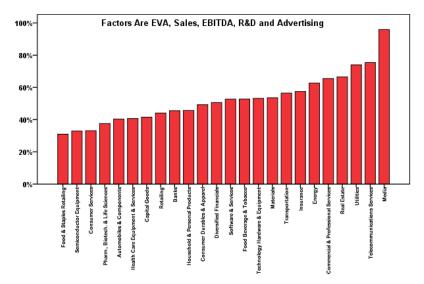
Delta FGV From Delta Advertising

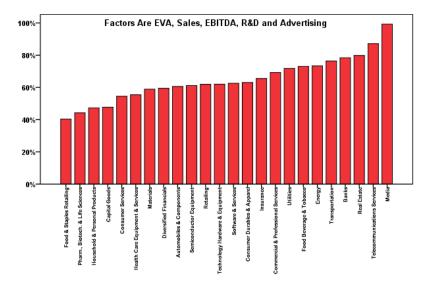

Delta FGV From Delta R&D

The left panel shows five year \triangle FGV as multiple of capitalized after-tax \triangle R&D. If the multiple is greater than 1.0, the increase in FGV is greater than the negative effect on capitalized EVA, so R&D is adding value, not just FGV.

The right panel shows five year \triangle FGV as a multiple of capitalized after-tax \triangle advertising.

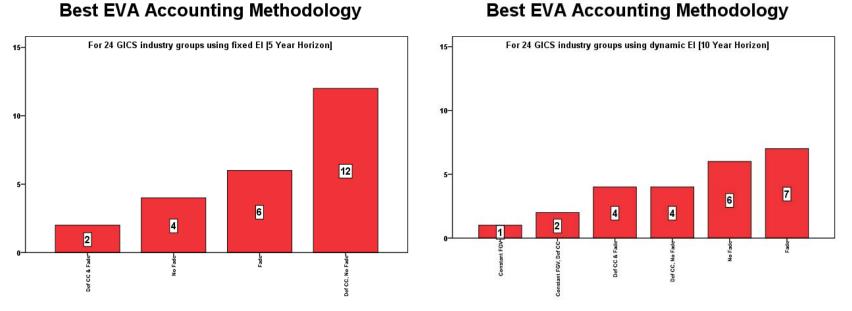
Insights from the \triangle FGV models: Sales growth without positive EVA adds value in some industries but not all


Delta FGV From Delta Sales


Delta FGV From Delta EVA and Growth

The left panel shows the industry groups where capitalized \triangle EVA x ln(1 + sales growth) increases FGV. The right panel shows the industry groups where sales, independent of \triangle EVA, increases \triangle FGV.

A five factor model explains 52% of the variation in five year \triangle FGV for the median industry group


5 Yr Delta FGV Explained by All Factors

10 Yr Delta FGV Explained by All Factors

A five factor model explains 62% of the variation in ten year \triangle FGV for the median industry group.

Using a deferred capital charge and/or taking account of fade improves EVA explanatory power in some industry groups

Best EVA Accounting Methodology

The left panel shows, for the 24 GICS industry groups, the EVA accounting methodologies that provide the highest r-squared with 5 year excess returns for excess Δ EVA using a fixed EI. The "fade" methodology calculates current operations value (and hence, FGV) taking account of the predictable fade in EVA return on capital. The "deferred cc" [deferred capital charge]" methodology defers the capital charge on all new investment for two years and then adds back the deferred capital charge (with interest at the cost of capital) over the next two years. The exhibit shows that a deferred capital charge with no fade provides the highest explanatory power for 12 of the 24 industry groups.

The right panel shows, for the 24 GICS industry groups, the EVA accounting methodologies that provide the highest r-squared with 10 year excess returns for excess \triangle EVA using a dynamic EI. In the 3 of the 24 GICS industry groups, a fixed EI assuming constant FGV works better than a dynamic EI.

EXCESS ΔEVA WITH DYNAMIC EI & OPERATING RETURN

There are two ways to incorporate a model of \triangle FGV into an operating measure that's consistent with DCF valuation

- Excess △EVA with "dynamic EI"
 - EI must satisfy WACC x FGV = EI + EI/WACC + Δ FGV
 - Dynamic EI = [WACC / (1 + WACC)] x [WACC x FGV predicted Δ FGV]
 - Predicted △FGV takes account of actual △R&D, △advertising, △sales and △EBITDA over the measurement period.
- Operating return:
 - Operating value = capital + EVA/WACC + predicted FGV
 - Operating return = Δ operating value + future value of free cash flow.
 - \triangle operating value = \triangle capital + \triangle EVA/WACC + \triangle predicted FGV
 - Excess operating return =
 - operating return (beginning operating value x [$(1 + WACC)^n 1$])

Example calculation of excess \triangle **EVA with dynamic El**

HOME DEPOT INC	2008	2009	2010	2011	2012	2013	2014
OPERATING PERFORMANCE							
Revenue		71,656	72,639	73,022	76,337	79,214	83,743
R&D		0	0	0	0	0	0
Advertising		975	923	878	849	869	890
EBITDA		6,960	7,929	8,558	9,624	10,862	12,544
Tax rate		39%	39%	39%	39%	39%	39%
NOPAT		3,528	3,891	4,352	4,958	5,719	6,739
Capital charge	_	2,914	2,788	2,688	2,617	2,540	2,405
EVA		614	1,103	1,664	2,341	3,179	4,334
ΔΕVΑ			489	561	678	838	1,155
Dynamic El			171	171	171	171	171
Excess ΔEVA with dynamic El			318	390	507	667	983
Future value of excess ∆EVA with dynamic El			318	733	1,300	2,072	3,224
Capitalized future value of excess ∆EVA with dynamic	EI		4,225	9,754	17,283	27,561	42,882
EVA return on capital		1.7%	3.2%	5.0%	7.3%	10.2%	14.7%
Free cash flow (= NOPAT - ∆capital)			5,123	5,230	5,905	7,382	7,334

CALCULATION OF EXPECTED AFUTURE GROWTH VALUE FROM NON-EVA FACTORS

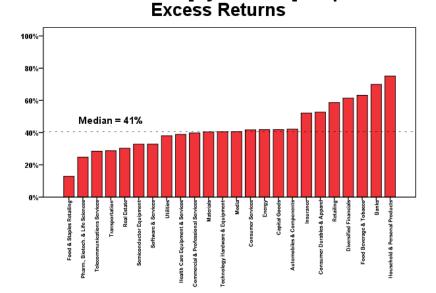
				Contri-	
	C	Capitalized	Delta	bution	
DRIVERS OF FUTURE		After-Tax	FGV	to Delta	
GROWTH VALUE CHANGE	Value	Value	Multiple	FGV	
5 year sales growth	12,087		0.11	1,277	
5 year sales growth x avg EVA rtr	975		1.77	1,727	
5 year R&D growth	0	0	0.00	C	
5 year advertising growth	-85	-634	0.84	-534	
5 year EBITDA growth	5,584	41,897	0.17	7,138	
Year[-5] FGV	35,407		-0.49	-17,296	
Year[-5] capital	34,296		0.26	8,772	
Change in FGV				1,083	

5 year delta EVA-/WACC	-1.00
5 year delta EVA+/WACC	0.15
5 year delta [EVA+/WACC] x ln(1 + sales growth)	0.57

DYNAMIC EXPECTED IMPROVEMENT CALCULATIONS Market enterprise value 77,254 78,098 97,331 125,399 130,732 163,286

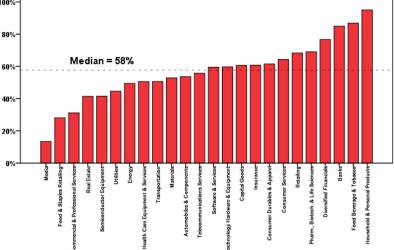
Cost of capital		8.1%	8.1%	8.1%	8.1%	8.1%	8.1%
Present value of current EVA		7,552	13,563	20,462	28,796	39,105	53,306
Ending capital	35,846	34,296	33,064	32,186	31,239	29,576	28,980
Future growth value		35,407					81,000
Required five year return on FGV		16,932					163,286
Predicted five year change in FGV		1,083					35,837
Required return on FGV from ΔEVA		15,849					199,122
EVA- value multiple ([1 + (1/WACC)] x FV factor + Δ FG	V)	16.73					
EVA+ value multiple ($[1 + (1/WACC)] \times FV$ factor + ΔFG	iV)	92.66					
Five year future value factor		5.88					
Dynamic El			171	171	171	171	171

EXCESS RETURN ANALYSIS


EACEDS HET ONLY ANALISIS	
Ending market enterprise value	163,286
Future value of FCF	35,837
Expected investor wealth	-114,199
Excess return	84,923
Change in FGV	45,593
Expected change in FGV (from non-EVA factors)	1,083
Expected change in FGV (from ΔEVA)	2,468
Unexpected change in FGV	42,041
Capitalized FV of excess ΔEVA	42,882
Excess return	84,923

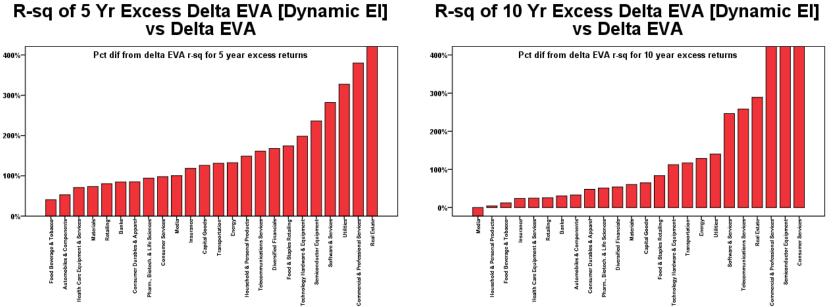
Example calculation of five year operating return

													Contri-
HOME DEPOT INC	2008	2009	2010	2011	2012	2013	2014			C	Capitalized	Delta	bution
									DRIVERS OF FUTURE		After-Tax	FGV	to Delta
OPERATING PERFORMANCE									GROWTH VALUE CHANGE	Value	Value	Multiple	FGV
Revenue		71,656	72,639	73,022	76,337	79,214	83,743		5 year sales growth	12,087		0.10	1,155
R&D		0	0	0	0	0	0		5 year sales growth x avg EVA rtr	975		0.66	644
Advertising		975	923	878	849	869	890		5 year R&D growth	0	0	0.00	0
EBITDA		6,960	7,929	8,558	9,624	10,862	12,544		5 year advertising growth	-85	-634	0.85	-539
Tax rate		39%	39%	39%	39%	39%	39%		5 year EBITDA growth	5,584	41,897	0.16	6,577
NOPAT		3,528	3,891	4,352	4,958	5,719	6,739		5 year EVA- change	0	0	-1.00	0
Capital charge		2,914	2,788	2,688	2,617	2,540	2,405		5 year EVA+ change	3,720	45,754	0.18	8,298
EVA		614	1,103	1,664	2,341	3,179	4,334		5 year EVA+ chg x ln(1 + sls growth)	580	7,132	0.62	4,398
									Year[-5] capital	34,296		-0.15	-4,987
OPERATING RETURN CALCULA	TIONS								Change in FGV				15,547
EVA return on beginning capit	al	1.7%	3.2%	5.0%	7.3%	10.2%	14.7%						
Cost of capital			8.1%	8.1%	8.1%	8.1%	8.1%						
EVA multiple (no fade)		12.3	12.3	12.3	12.3	12.3	12.3						
Present value of current EVA		7,552	13,563	20,462	28,796	39,105	53,306	А					
Ending capital	35,846	34,296	33,064	32,186	31,239	29,576	28,980	В					
Estimated FGV		17,556					33,103	С					
Operating value		59,404					115,389	D=A+B+C					
Cumulative future value of FC	F						35,837	E	OPERATING RETURN				
Operating wealth		59,404					151,226	F = D + E	Dollar operating return [= F - G]			91,822	
		G						= F/G - 1	Percentage operating return [= F/G - 1]			154.6%	
Free cash flow (= NOPAT - Δca	ipital)		5,123	5,230	5,905	7,382	7,334						
Cost of capital	8.13%	8.13%	8.13%	8.13%	8.13%	8.13%	8.13%		EXCESS OPERATING RETURN				
Expected operating wealth		59,404	64,234	69,456	75,103	81,210	87,812	7,812 63,414 Dollar excess operating return [I = F - H]					
							Н	H 72.2% Percentage excess operating return [=I/H - 1]					


CALCULATION OF ESTIMATED CHANGE IN FUTURE GROWTH VALUE

Excess \triangle EVA with dynamic El explains 58% of 10 year excess return variance for the median industry group

Excess Delta EVA [Dynamic EI] r-sq for 5 Yr

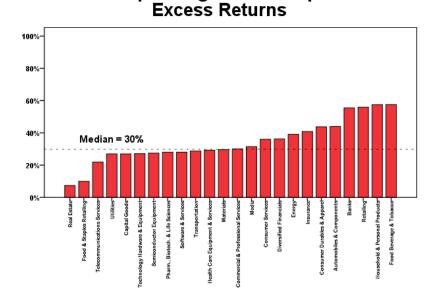


The left panel shows, for S&P 1500 companies in each of the 24 GICS industry groups, the explanatory power of excess \triangle EVA for five year excess returns ending in 1996-2015.

The right panel shows, for each of the 24 GICS industry groups, the explanatory power of excess ∆EVA for ten year excess returns.

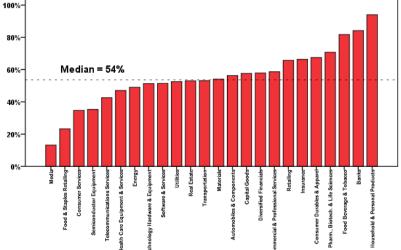
For the median GICS industry group, \triangle EVA alone explains 19% of the variation in 5 year excess returns and 31% of the variation in ten years excess return vs. 31% and 50% for \triangle EBITDA.

ΔEVA with dynamic EI has much greater explanatory power than simple **∆EVA**



R-sq of 5 Yr Excess Delta EVA [Dynamic El] vs Delta EVA

The left panel shows, for S&P 1500 companies in each of the 24 GICS industry groups, the percent difference between the 5 year excess return variance explained by excess Δ EVA with dynamic EI and the variance explained by Δ EVA. The sample is five year periods ending in 1996-2015. The median value is +128%.


The right panel shows the same analysis using ten year returns. The median value is +63%.

Operating return explains 54% of 10 year excess return variance for the median industry group

Excess Operating Return r-sq for 5 Yr

The left panel shows, for S&P 1500 companies in each of the 24 GICS industry groups, the explanatory power of excess operating return for five year excess returns ending in 1996-2015.

The right panel shows the same analysis using ten year returns.

EXCESS AEVA WITH DYNAMIC EI & OPERATING RETURN VS

EQUALLY WEIGHTED MEASURES & **\Delta EBITDA**

There are two common approaches to period measurement that don't try to isolate FGV

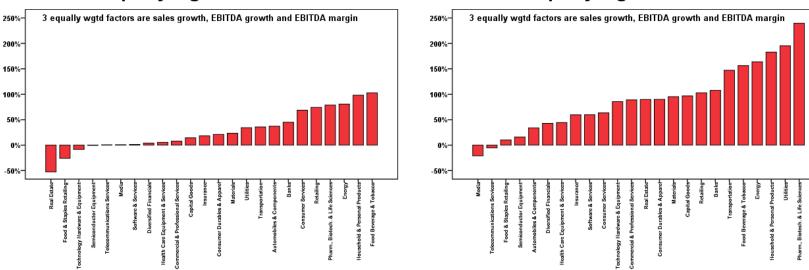
- EBITDA growth is widely used by equity analysts and others as a measure of period performance.
 - For comparison with EVA with dynamic EI and operating return, we will use △EBITDA per dollar of expected market enterprise value.
 - △EBITDA per dollar of beginning or expected market enterprise value is much more predictive of investor returns than the percentage growth rate in EBITDA.
- Equally weighted multiple measures are widely promoted by institutional investors and governance advisors and frequently used in corporate incentive plans.
 - Measures of sales growth, profit growth and capital or operating efficiency are commonly used.
 - For comparison with excess △EVA with dynamic EI and operating return, we will use an equally weighted average of sales growth percentile, EBITDA growth percentile and EBITDA margin percentile, all measured with respect to the GICS industry group.
- To assess the usefulness of the four measures, we will analyze each measure's ability to explain excess return variance across S&P 1500 companies.
 - Excess return = [ending market enterprise value + future value of free cash flow expected market enterprise value]/expected market enterprise value.
 - Expected market enterprise value = beginning market enterprise value x (1 + WACC)ⁿ.

Excess \triangle EVA has much more explanatory power than three equally weighted measures

vs 3 Equally Wgted Factors 3 equally wgtd factors are sales growth, EBITDA growth and EBITDA margin 3 equally wgtd factors are sales growth, EBITDA growth and EBITDA margin 250% 250% 200%-200% 150%-150% 100%-100% 50% 50% 0%-0%--50% -50% iductor Equi ood & Staples Re & Eau biles & Comp

R-sq of 10 Yr Excess Delta EVA [Dynamic EI]

The left panel shows, for S&P 1500 companies in each of the 24 GICS industry groups, the percent difference between the 5 year excess return variance explained by excess \triangle EVA with dynamic EI and the variance explained by three equally weighted factors (i.e., \triangle EBITDA, \triangle sales and EBITDA margin on sales). The sample is five year periods ending in 1996-2015. The median percent difference is +55%.


The right panel shows the same analysis using ten year returns. The median percent difference is +90%.

The equally weighted measure is constructed by calculating percentile ranks for the three variables and then taking the average of the three percentile ranks. \triangle EBITDA and \triangle sales are standardized by expected market enterprise value (i.e., market enterprise value x (1 + WACC)^years) before calculating percentile ranks.

R-sq of 5 Yr Excess Delta EVA [Dynamic El] vs 3 Equally Wgted Factors

Excess operating return has more explanatory power than three equally weighted measures, particularly over longer time horizons

R-sq of 10 Yr Excess Operating Return vs 3 Equally Wgted Factors

R-sq of 5 Yr Excess Operating Return vs 3 Equally Wgted Factors

The left panel shows, for S&P 1500 companies in each of the 24 GICS industry groups, the percent difference between the 5 year excess return variance explained by excess operating return and the variance explained by three equally weighted factors (i.e., Δ EBITDA, Δ sales and EBITDA margin on sales). The sample is five year periods ending in 1996-2015. The median percent difference is +20%.

The right panel shows the same analysis using ten year returns. The median percent difference is +90%.

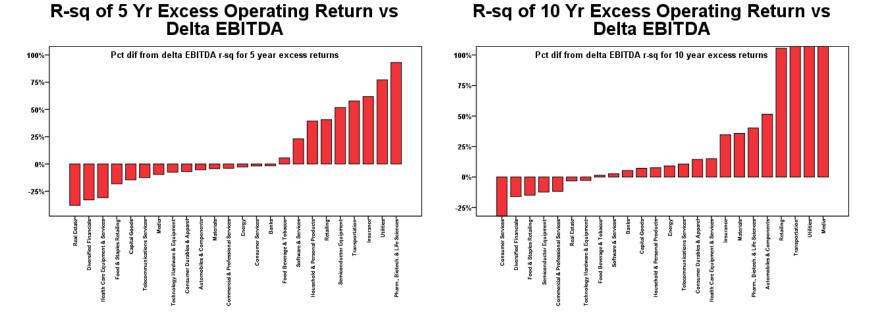
The equally weighted measure is constructed by calculating percentile ranks for the three variables and then taking the average of the three percentile ranks. \triangle EBITDA and \triangle sales are standardized by expected market enterprise value (i.e., market enterprise value x (1 + WACC)^years) before calculating percentile ranks.

Excess \triangle EVA with dynamic EI has much greater explanatory power than \triangle EBITDA

Pct dif from delta EBITDA r-sq for 5 year excess returns Pct dif from delta EBITDA r-sq for 10 year excess returns 150% 150% 100%-100% 50% 50% 0%-& Equip iductor Equi & Equ Capital & Life er Durables & Consume Food & Staples 8 Cor 5 Softw id & Pe

The left panel shows, for S&P 1500 companies in each of the 24 GICS industry groups, the percent difference between the 5 year excess return variance explained by excess \triangle EVA with dynamic EI and the variance explained by \triangle EBITDA. The sample is five year periods ending in 1996-2015. The median value is +29%.

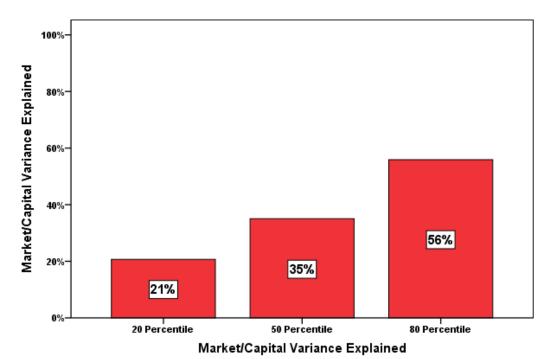
The right panel shows the same analysis using ten year returns. The median value is +16%.


R-sq of 5 Yr Excess Delta EVA [Dynamic El] vs Delta EBITDA

Shareholder Value Advisors

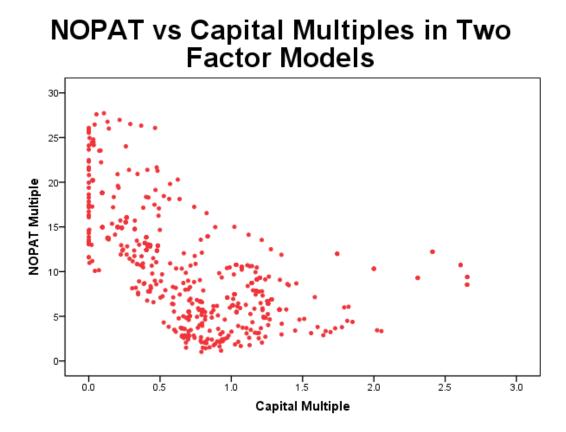
Operating return has greater explanatory power than \triangle EBITDA in 9 of 24 industry groups over 5 years and in 17 of 24 over ten years

The left panel shows, for S&P 1500 companies in each of the 24 GICS industry groups, the percent difference between the 5 year excess return variance explained by excess \triangle EVA with dynamic EI and the variance explained by \triangle EBITDA. The sample is five year periods ending in 1996-2015. The median value is -3%.

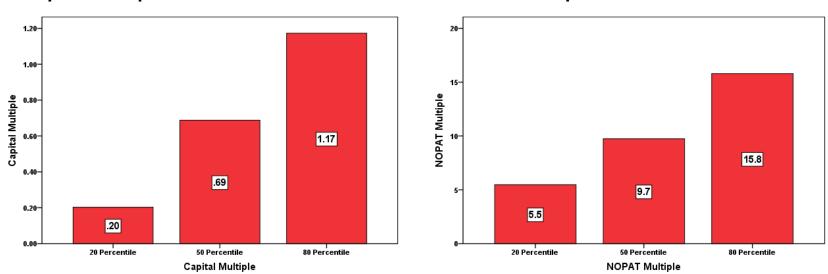

The right panel shows the same analysis using ten year returns. The median value is +8%.

OPERATING RETURN USING A SIMPLER MODEL OF OPERATING ENTERPRISE VALUE

This section explains a simpler, but less accurate, approach to measuring operating return


- Develop a formula for operating enterprise value using four variables: capital, NOPAT, EVA and sales growth. Operating enterprise value =
 - Capital multiple x capital
 - NOPAT multiple x NOPAT
 - [EVA+ x sales growth] multiple x EVA+ x sales growth (EVA+ = EVA if positive, 0 otherwise)
 - Sales growth multiple x capital x sales growth
- \$ operating return = Δ operating enterprise value + future value of free cash flow.
 - Operating enterprise value is calculated at the beginning and end of the measurement period using the same valuation multiples.
 - Percent operating return = dollar operating return/beginning operating value.
 - Percent excess operating return = (dollar operating return expected dollar operating return)/expected investor wealth.
- Multiples are developed using ten years of historical data for the industry.
 - NOPAT, EVA x sales growth and capital x sales growth are only used if their multiples are positive and statistically significant at conventional 5% levels.
 - We use an industry model if there are statistically significant variables at the industry level (34% of all models) and a sector model if there are no statistically significant variables at the industry level (57% of all models).
 - In 7% of the 1,234 models (there is a separate model for each company/year in the Frydman Saks database), no variable is statistically significant at the industry or sector level, so we use the mean market/capital ratio.

The median 1-4 factor model explains 35% of the variance in market/capital models


R-Sq for 2-4 Factor Models

The statistics reported above are for industry/sector models developed for the 101 companies in the Frydman/Saks database using data for the years 1950-2013. The Frydman/Saks database provides top management compensation data for the years 1936-1991 (which we supplement with data from Execucomp for the years 1992-2013). It was developed by Professor Carola Frydman of Boston University and Raven Saks of the Federal Reserve.

This scatterplot shows that the difference from the average NOPAT multiple tends to offset the difference from the average capital multiple. In other words, when the NOPAT multiple is above average, the capital multiple tends to be below average and vice versa.

Capital and NOPAT multiples in two factor models

Capital Multiples in Two Factor Models

NOPAT Multiples in Two Factor Models

The sample is the companies in the augmented Frydman Saks database using five year periods ending in 1954-2013.

Companies in the Frydman Saks database

3M CO AETNA INC ALTRIA GROUP INC AMERICAN EXPRESS CO AMERICAN FINANCIAL GROUP INC AMERICAN INTERNATIONAL GROUP AMERICAN MOTORS CORP AMERICAN STORES CO AMOCO CORP ANACONDA CO ARMCO INC AT&T CORP ATLANTIC RICHFIELD CO **BEAM INC BELLSOUTH CORP** BESTFOODS BETHLEHEM STEEL CORP **BOEING CO** CBS CORP -OLD CHASE MANHATTAN CORP -OLD CHESSIE SYSTEM INC CHEVRON CORP CHIQUITA BRANDS INTLINC CHRYSLER CORP CIGNA CORP CITICORP CITIES SERVICE CO CITIGROUP GLOBAL MKTS HLDGS CITIGROUP INC COCA-COLA CO COMMONWEALTH EDISON CO CONAGRA FOODS INC CONOCOPHILLIPS CONSOLIDATED EDISON INC

CONTINENTAL GROUP INC CSX CORP DIGITAL EQUIPMENT DOW CHEMICAL DTE ENERGY CO DU PONT (EI) DE NEMOURS EASTMAN KODAK CO ENRON CORP EXXON MOBIL CORP **FIRESTONE TIRE & RUBBER CO** FOOT LOCKER INC FORD MOTOR CO GENERAL DYNAMICS CORP **GENERAL ELECTRIC CO** GENERAL FOODS CORP **GENERAL MOTORS CO** GEORGIA-PACIFIC CORP GOODYEAR TIRE & RUBBER CO GTE CORP GULF CORP HEWLETT-PACKARD CO HONEYWELL INTERNATIONAL INC INTL BUSINESS MACHINES CORP INTL PAPER CO ITT CORP KENNECOTT CORP **KRAFT GENERAL FOODS KRAFTINC -OLD KROGER CO** LOCKHEED MARTIN CORP LTV CORP MARATHON OIL CORP MARCOR INC MCDONNELL DOUGLAS CORP

MOBIL CORP MOMENTIVE SPCLTY CHEMICALS NABISCO GROUP HOLDINGS CORP NAVISTAR INTERNATIONAL CORP NORFOLK SOUTHERN CORP OCCIDENTAL PETROLEUM CORP **OWENS-ILLINOIS INC** PARKE DAVIS & CO PENNEY (J C) CO PEPSICO INC PG&E CORP PHELPS DODGE CORP PRIMERICA INC **PROCTER & GAMBLE CO** RCA CORP **REPUBLIC STEEL CORP ROCKWELL AUTOMATION** RYERSON HOLDING CORP SAFEWAY INC SEARS HOLDINGS CORP SEARS ROEBUCK & CO SHELL OIL CO SPERRY CORP TARGET CORP **TENNECO INC** TEXACO INC UNION CARBIDE CORP UNIROYAL INC UNISYS CORP UNITED TECHNOLOGIES CORP VECTOR GROUP LTD WAL-MART STORES INC WARNER-LAMBERT CO WRIGLEY (WM) JR CO

Operating return explains 22% of the variation in five year investor returns

The sample is the companies in the augmented Frydman Saks database using five year periods ending in 1954-2013.

ISOLATING MANAGEMENT'S CONTRIBUTION TO OPERATING PERFORMANCE

There is a common belief that operating performance is controllable, but market performance is not

- There is a common belief that management controls operating performance, but stock market performance is beyond management control.
 - The National Association of Corporate Directors says that compensation "committees should link pay to desired outcomes that the CEO and senior management team can affect, rather than to stock price alone." (Report of the Blue Ribbon Commission on the Compensation Committee, 2015, p. 6).
 - A partner of a leading compensation consulting firm recently wrote that "executives cannot control TSR directly, and it generally makes more sense to link pay to the strategic priorities of the business that executives can control, like revenue growth, innovation, margin management and returns on investment". Semler Brossy managing director John Borneman, "Executive Pay: Creating Real Alignment with Shareholders", *Workspan*, January 2016, p. 10.
- The graphs on the following page show that industry affects excess △EVA as much and as strongly as it affects △FGV and investor return.
- The second following page shows that industry explains less investor return variance over longer time horizons, but that industry betas do not decline with longer time horizons.

Industry affects excess $\triangle EVA$ as much and as strongly as $\triangle FGV$

Notes: based on 22,787 five periods ending in 1996-2015 for S&P 1500 companies. Industry performance for a company is the average performance of the company's GICS industry group, excluding the company, for the same five year period.

Industry explains less return variance over longer horizons, but industry betas do not decline

Notes: based on periods ending in 1996-2015 for S&P 1500 companies. Industry is GICS industry group. Returns are shareholder returns, not investor returns.

Summary

- Operating performance measurement has two key objectives:
 - Increasing shareholder value, which means that performance measures need to tie to discounted cash flow value.
 - Isolating and rewarding management contribution to value, which means that performance measures need to be decomposed into the component due to management and the component due to industry factors.
- The "EVA math" is the key to understanding how operating performance links to discounted cash flow value.
 - The EVA math highlights the importance of future growth value ("FGV") and shows why non-EVA measures can be important: they are better proxies for Δ FGV than Δ EVA.
 - Combining EVA with empirical models of △FGV significantly improves operating performance measurement, i.e., makes the operating performance measure a better proxy for excess return. This can be done in two ways: excess △EVA with dynamic EI and operating return".
- Better operating performance measures don't eliminate the need to isolate management's contribution to value because industry affects operating performance, not just market performance.
- The two operating performance measures can be used to monitor strategy implementation, communicate with analysts and governance advisors and improve executive pay.